NMDA receptor activation increases free radical production through nitric oxide and NOX2.
نویسندگان
چکیده
Reactive oxygen species (ROS) and nitric oxide (NO) participate in NMDA receptor signaling. However, the source(s) of the ROS and their role in the increase in cerebral blood flow (CBF) induced by NMDA receptor activation have not been firmly established. NADPH oxidase generates ROS in neurons, but there is no direct evidence that this enzyme is present in neurons containing NMDA receptors, or that is involved in NMDA receptor-dependent ROS production and CBF increase. We addressed these questions using a combination of in vivo and in vitro approaches. We found that the CBF and ROS increases elicited by topical application of NMDA to the mouse neocortex were both dependent on neuronal NO synthase (nNOS), cGMP, and the cGMP effector kinase protein kinase G (PKG). In mice lacking the NADPH oxidase subunit NOX2, the ROS increase was not observed, but the CBF increase was still present. Electron microscopy of the neocortex revealed NOX2 immunolabeling in postsynaptic somata and dendrites that also expressed the NMDA receptor NR1 subunit and nNOS. In neuronal cultures, the NMDA-induced increase in ROS was mediated by NADPH oxidase through NO, cGMP and PKG. We conclude that NADPH oxidase in postsynaptic neurons generates ROS during NMDA receptor activation. However, NMDA receptor-derived ROS do not contribute to the CBF increase. The findings establish a NOX2-containing NADPH oxidase as a major source of ROS produced by NMDA receptor activation, and identify NO as the critical link between NMDA receptor activity and NOX2-dependent ROS production.
منابع مشابه
Levels of endogenous adenosine in rat striatum. I. Regulation by ionotropic glutamate receptors, nitric oxide and free radicals.
Glutamate release after ischemia, hypoxia and seizure activity plays an important role in stimulating adenosine production and release. We characterized the ionotropic glutamate receptor subtype that regulates adenosine levels in vivo and investigated the role of nitric oxide and free radicals in mediating N-methyl-D-aspartate (NMDA)-induced increases in adenosine levels. Rats received unilater...
متن کاملIntraischaemic hypothermia reduces free radical production and protects against ischaemic insults in cultured hippocampal slices.
Hypothermia has been demonstrated to be an effective neuroprotective strategy in a number of models of ischaemic and excitotoxic neurodegeneration in vitro and in vivo. Reduced glutamate release and free radical production have been postulated as potential mechanisms underlying this effect but no definitive mechanism has yet been reported. In the current study, we have used oxygen-glucose depri...
متن کاملMechanisms of N-methyl-D-aspartate receptor inhibition by melatonin in the rat striatum.
N-methyl-D-aspartate (NMDA) receptor activation comprises multiple regulatory sites controlling Ca2+ influx into the cell. NMDA-induced increases in intracellular [Ca(+2)] lead to nitric oxide (NO) production through activation of neuronal NO synthase (nNOS). Melatonin inhibits either glutamate or NMDA-induced excitation, but the mechanism of this inhibition is unknown. In the present study, th...
متن کاملMechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice.
We investigated the role of neuronal (type I) nitric oxide synthase (nNOS) in NMDA-mediated excitotoxicity in wild-type (SV129 and C57BL/6J) and type I NOS knock-out (nNOS-/-) mice and examined its relationship to apoptosis. Excitotoxic lesions were produced by intrastriatal stereotactic NMDA microinjections (10-20 nmol). Lesion size was dose- and time-dependent, completely blocked by MK-801 pr...
متن کاملNitric oxide and calcium signaling regulate myocardial tumor necrosis factor-α expression and cardiac function in sepsis.
Myocardial tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, is a critical inducer of myocardial dysfunction in sepsis. The purpose of this review is to summarize the mechanisms through which TNF-alpha production is regulated in cardiomyocytes in response to lipopolysaccharide (LPS), a key pathogen-associated molecular pattern (PAMP) in sepsis. These mechanisms include Nox2-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2009